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I. INTRODUCTION

The general objective of the research reported here is to determine a
suitable method for modifying thf allistic Research Laboratory's (BRL) 2.44
meter shock tube/blast simulator™’“ to produce an exponentially decaying blast
wave. This waveform would complement the long duration flat-topped type
produced presently by the shock tube. Possible methods of modifications were
to be tried with a 1/48th scale model shock tube. From these results, perfor-
mance predictions were to be made for the full-size shock tube. Computer
code predictions from the NASA Ames one-dimensional hydrocode™ are also given.
Additional comparisons may be found in the appendix.

The study included four posgible shock tube driver modifications and one
modification to the test section where Gion proposes a large-diameter test
section might be added. The four driver modifications include a short
driver, a driver with internal baffles, a single pipe driver, and a mul iple
pipe driver similar to the French shock tube drivers used at the Gramat
facility. Each of the listed possible modifications were experimentally tried
with the 1/48th scale shock tube model. The hydrocode was also utilized to
generate pressure-time profiles for comparison with the experimental data
and to predict the performance of the full size 2.44 m shock tube. See the
appendix.

lelan P. Bertrand, "BRL Dual Shock Tube Facility," BRL Memorandum Report
2001, Ballistic Research Laboratory, Aberdeen Proving Ground, MD, August
1969 (AD 693264). -

®Brian P. Bertrand, "Proposed Improvement of BRL Dual Shock Tube Facility,?
BRL Technical Note No. 1733, Ballistie Research Laboratory, Aberdeen Proving
Ground, MD, April 1970 (AD 871736).

S andrew Mark, "Computational Design of Large Scale Blast Simulqtors{" ATAA
19th Aerospace Sciences Meeting, January 12-15, 1981, St. Louis, Missouri.

4Edhund J. Gion, "Simulation of Low Level Explosives Blast Loadings at Full

Scale by Modifications to BRL Dual Shock Tube Facility," Memorandum Report
ARBRL-MR-02853, Ballistic Research Laboratory, Aberdeen Proving Ground, MD,
July 1978 (AD A059854).

St . g Lameter High Performance Blast
J.R. Crosnier and J.B.G. Monsac, "Large Diamete g
Simulator," Seventh MABS, Medicine Hat, Alberta, Carada, 13-17 July 1981.



IT. TEST PROCEDURE

This section describes details of the 1/48th scale shock tube model, the
various modifications to it, and the associated electronic recording used.

A. 1/48th Scale Shock Tube Model

A standard calibration shock tube had been redesigned previously6
to a 1/48th scale model of the BFL 2.44 m shock tube. Figures 1 and 2 show
sketches of the full size and the model shock tubes, respectively.

The shock tube model (and the full-size one) were operated in an
air-air mode with a rarefaction wave eliminator (RWE) in place at the end
of the test section. FEach of the modifications was tried on the scale shock
tube model over a side-on shock overpressure range of 25 kPa (3.6 psi) to
125 kPa (18 psi). A variety of mylar diaphragms was used with a bursting
range sufficient for driver pressures to give blast waves in this desired
range. This range included the most useful range of expected future tests at
the BRL 2.44 m shock tube.

The transducer Stations 1-4, Figure 2, were located from the diaphragnms
SO as to agree with the scaled-down distances from the full-size shock tube
as shown on Figure 1. The transducers and associated electronics are described
in the next section.

B. Instrumentation

A schematic of the data acquisition-reduction system is given in Figure
3. Quartz piezoelectric transducers were used in the shock tube test section
to monitor the blast wave shape and interaction with the rarefaction
wave eliminator. The results from the transducers were used to evaluate each
modification of the driver section.

The transducers were coupled through a power supply and data amplifiers
to a digitizing oscilloscope. On-site comparisons of the results were made
directly from the hard copies of the pressure-time records. Finzl data
processing was completed with the computer, printer, and plotter. Tables of
data and plots of pressure-time records for the various test stations are
included for comparison of results obtained from each driver.

C. Types of Shock Tube Drivers

Four representative types of shock tube drivers are shown in Figures
4A to 4D. The upper three drivers are designed to cause a rarefaction wave
to catch up to the shock front at the desired test station. A peaked shock

6Ge0rge A. Coulter, Gerald Bulmash,and Charles N. Kingery, "Experimental
and Computational Modeling of Rarefaction Wave Eliminators Suitable for
the BRL 2.44 m Shock Tube," Technical Report ARBRL-TR-02503, Ballistic
Research Laboratory, Aberdeen Proving Ground, MD, June 1983 (AD A131894).



‘oqny d0Ys W pH°z TYG FO yYoieNys T eanStd

NOILJ3S WOVIHJVIQ

NOI1D3S 1S3l NOILD3S ¥3AI13Q
—clo_dm - 0€£Z8
4
_,mm_uw .@.Qoe ﬁe .o_.ﬁé.m
0_ IV 6l |—
~—G¥'SE—
] AL A——
£€°29

31vDS Ol 1ON =x%
SNOILVLS ¥3IDNASNVYL . SIYLIW NI SNOISNIWIQ

11



aN1d
N3dO

IOPOW 9qnL YO0YyS oTEdS UYIgy/T °¢ 9IN3Td

"STOPON 9qnL 3O0YS 3O Y23ds Vv

NOILD3S WOVIH4VIA

NOILD3S 1S3l NOILD3S ¥3A1¥Q
_l||||$§ v__ - 042\ ———= 2G50
¥
o) o® e ﬂ@ «Ql EM 80°S
l_ yOv'0 |-
e 6€20—
e 656°0—»
6671 —=1

31vDS Ol LON =
SNOILVLIS ¥3DNASNVYL $3¥13IW NI SNOISN3IWIA

12



(*3u0D) TOPOW 3qn] YO0ys 9TedS YIgy/I

*Z 2an3td

SoTJJeq/uor3lodg IoAtxaq Jo ydexdojoyd °g

13



r DATA -'
| AMPLIFIER |
POWER DIGITIZING

| TRANSDUCER  SUPPLY [ OSCILLOSCOPE |
| PCR PCB TRONIX TEKTRONI X |
| 113A24 483A02 AM502 5223

DIFF |
| |
| BASIC DATA ACQUISITION N
ol ) = = e = 2 s, A —_— —
— S
| PRINTER !
| TEKTRONIX |
| 464 |
| HARD COPY |
| TEKTRONI X |
| 463
| PLOTTER COMPUTER :
| TEKTRONIX TEKTRONIX
| 4662 4052 |
l DIGITAL TAPE l

SOFTWARE
| RECORDER PROGRAM l
| TEKTRONIX
| 4924 BRL |
|
L . __ __ __ __ FINAL DATA REDUCTION |
Figure 3. Schematic of Data Acquisition-Reduction System
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wave will occur due to rarefaction catch-up after this point.7’8 Reference 7
shows this distance to be fifteen to sixteen driver lengths. The fourth
driver shown in Figure 4-D is much smaller in diameter than the test section
of the shock tube; therefore,a peaked wave front will occur shortly after
expansion into the larger test section. See Reference 4.

The next section gives results for the four types of shock tube drivers.

ITI. EXPERIMENTAL RESULTS

The results are summarized in the data tables and with pressure-time

records to illustrate the variations in waveforms caused by the different
shock tube drivers.

A. Data Tables

The pertinent shot parameters, types of shock tube drivers tested,
and input shock pressure levels used are listed in Table 1. The shots are
grouped by the type of driver used.

The rarefaction wave elimination (RWE) standoff distance suitable
for a peaked, decaying waveform necessary to eliminate the end rarefaction
and to extend the test time (positive duration of the shock wave) is presented
also. TBe RWE used in these tests had a fixed open area of 2.54 cm by 3.49 cn
(8.86 cm”). This area plus the area represented by the standoff distance
are combined to give an effective open area. The effective open area divided
by the cross-section area of the shock tube gives the vented area ratio. The

vented area ratio is a function of peak overpressure which ranges from 23 to
124 kPa.

B. Driver Configurations

The pressure-time records are presented for the various driver
configurations.

1. Long Straight Driver. The first series of records shown in
Figure 5 illustratesthe pressure time waveforms as a function of transducer
station at one shock overpressure level. This is the standard flat-top wave
form available from the shock tube in its present configuration (Figure 2).

7c. ¥. Lampson, "Resumé of the Theory of Plane Shock and Adiabatic Waves
with Applications to the Theory of the Shock Tube," BRL Technical Note
139, Ballistic Research Laboratories, Aberdeen Proving Ground, MD, March
1950 (AD 629328).

8I. I. Glass, "Shock Tubes Part I: Theory and Performance of Simple Shock
Tubes," UIIA Review No. 12, Part I, Institute of Aerophysics, University

of Toronto, Toronto, Canada, May 1958.
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o SHOT: 2-82-31
STATION: 2 SIDE-ON

S i———
1 B 1
38 48
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=k
-
&
g‘ 58
25¢
o 1 e
" 18 2 » -
TIME, MSEC
TEST: RWE, 2 IN ST
- SHOT: 2-82-12
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- 75 i
)
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£ |
|
8 § = i T 1 .
8 18 2 S8 @

TIME, MSEC

Figure 5. Pressure-Time Records for Long Straight Driver
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By multiplying the time scale by 48, the result will apply to the RWE
2.44 metre shock tube shown in Figure 1.

2. Short Straight Driver. The records shown in Figure 6 are from
a short driver (10.16 cm) as shown in Figure 4-A above. The length was chosen
(References 7 and 8) so as to allow the rarefaction from the end of the
closed driver to overtake the shock front at the desired test station. Test
Station 3 was chosen (Station 87 in the 2.44 mm shock tube) since it is of the
most interest. Even though a peaked decaying shock wave was formed with the
short driver, the total duration is short - about 2-3 ms.

3. Baffles in Long Driver. When the baffles were selected for
placement in the driver there were two variables: one, the amount of open
area and two, the location within the driver. Therefore, the method of
threaded rods with lock nuts (Figure 2-B) was used for ease in varying the
separation distance between the baffles. The details of the number, opening,
and locations are presented in Table 2. These same baffle parameters are
presented graphically in Figures 7, 8, and 9.

The decaying wave achieved with five baffles '(Case 1-A) is
presented in Figure 10A. The baffle location and percent openings are
presented in Figure 7. The five baffles produced an acceptable decaying
shock wave. The predicted duration for a similar shock wave in the 2.44 metre
tube would be 1.44 seconds.

The number of baffles was decreased to four (Case 1-B). The
percent opening, and location are shown in Figure 8, and the overpressure
versus time at Stations 3 and 4 1is presented in Figure 10B. There is no
significant difference noticed between the five-baffle and four-baffle cases.

The three-baffle tests are designated Cases 1-C, 1-D, 1-E, and
1-F. The percentage openings and locations are listed in Table 2 and
plotted in Figure 9. The overpressure versus time at Stations 3 and 4 for
Case 1-C and 1-D are plotted in Figure 10-C. The baffles were rearranged as
noted for Cases 1-E and 1-F and the records are shown in Figure 10-D.
From these tests it was determined that an optimum spacing, in terms of the
most smoothly decaying shock wave, was considered to be Case 1-E.

A number of tests at different pressure levels was fired with
three baffles spaced as noted for (Case 1-E. Stagnation pressure, side-on
pressure, and their differences (called Q) for Stations 3 and 4 are shown in
Figure 11 according to pressure level and transducer station.

4. Single and Multiple Pipe Driver. The configuration for the
single pipe driver (Case 3) is shown in Figure 4-D and listed in Table 1.
The overpressure versus time recorded at the four stations is presented in
Figure 12-A. Because of the expansion from a single pipe of small diameter
into a larger pipe the overpressure versus time recorded at Station 1 shows
a sharp decay behind the shock front. The peak overpressure also decays with
distance down the tube. The single pipe does not produce an acceptable wave
shape for a nuclear blast simulation.

21
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Table 2. BAFFLE PARAMETERS

Position from Closed Baffle Baffle
No.of Baffles End of Driver Ratio Open Thickness Case

cm in.

5 20.32 8.0 0.050 All baffles 1-A
58.42 23.0 0.105 were 0.635 cm
103.89 40.9 0.275 (1/4 in.)
144.27 56.8 0.491
161.80 63.7 0.680

4 58.42 23.0 0.105 1-B -
103.89 40.9 0.275
144 .27 56.8 0.491
161.80 63.7 0.681

3 58.42 23.0 0.105 1-C
103.89 40.9 0.275
162.05 63.8 0.560

3 58.42 23.0 0.105 1-D
103.89 40.9 0.275
162.05 63.8 0.680

3 82.55 32.5 0.180 1-E
142.24 56.0 0.491
160.02 63.0 0.680

3 58.43 23.0 0.105 1-F
142.24 56.0 0.491
160.27 63.1 0.680
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Figure 10, Pressure-Time Records with Baffles in Long Driver
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Figure 10. Pressure-Time Records with Baffles in Long Driver (Cont,)
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Figure 10, Pressure-Time Records with Baffles in Long Driver (Cont.)
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Figure 11. Pressure-Time Records with Three Baffles in Long Driver
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Figure 11. Pressure-Time Records with Three Baffles in Long Driver (Cont.)
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Figure 11. Pressure-Time Records with Three Baffles in Long Driver (Cont.)
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Figure 11. Pressure-Time Records with Three Baffles in Long Driver (Cont.)
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The multiple pipe drivers, Case 2, as shown in Figure 4-C and Table 1
produced a uniformly decaying peaked shock wave. The wave shapes recorded at
the four test stations are shown in Figures 12-B. Here again there is an
expansion from the compression chamber to the test chamber when the diaphragm
is broken and a peaked wave is recorded at Station 1. When compared to the
baffled straight driver, the multiple tube driver produces a blast wave
lower in peak overpressure and with about one half the positive duration.

IV. ANALYSIS

A discussion of rarefaction catch-up is given to illustrate how this
technique may be used to produce a decaying shock wave starting with a step
shock wave. Results obtained from the 1/48th scale shock tube model using
this method are scaled up to predict results for the BRL 2.44 m shock tube.
The equivalent weight of high explosive (TNT) needed to produce similar
free-field waveforms are then calculated.

A. Rarefaction Catch-Up

Lampson in Reference 7 has shown that given a long erough test section,
the reflected rarefaction from the closed end of the shock tube driver will
overtake the shock front. From that point on, the shock wave will have a
peak and a decaying waveform. The resulting waveform more nearly simulates
the free-field blast from a nuclear weapon than does a flat-top wave.

Equation 1 gives the distance x in the test section, measured from the
shock tube diaphragm, at which the reflected rarefaction wave reaches the
cool gas boundary.

(%LD(Y-I) 2\}7(1+6Y) + 4(Y-1) . (1)

o = > for air,
- {Y-1)

\d7(1+6¥) V7(1+6Y)

where L, is the shock tube driver length and Y is the absolute shock
pressuré ratio.Equation 2 gives: the additional distance x; for the rarefaction
to travel through the hot gas to reach the shock front.

6+Y(5 (Y-1) + ¢7Y (6+Y))

X3 = X s (2)
S(Y-1)(Q7Y (6+Y) - (6+Y)

where x is the distance from Equation 1 and Y is again the absolute shock
préSsure ratio. The total distance L, from the diaphragm at which the
rarefaction overtakes the shock wave 1s given by the sum of the results
from Equations 1 and 2.
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p— =x(1+ (61) (NTY(6v) + 5(r-1))

—— (3)
B 1 5(1-1) ({[Y(6) - (6+1))
Set A= and 4)
Lp
poqe 6 \/7Y(6+Y—)_ + 5(Y-1)) (5)
5(Y-1) ( \I7Y(6+Y) - (6+Y))
L
so that R = AB. (6)
Lp

This ratio is tabulated in Table 3 and graphed in Figure 13. The ratio is
very dependent upon shock pressure at the lower range pressures. It is
necessary to choose carefully the first baffle location in the driver for the
smallest anticipated pressure level. Otherwise,the rarefaction will not catch
up to shock front to produce the desired peak decaying waveform.

. 9 . .
A wave diagram ~ showing the travel of the rarefaction wave from the
closed end of a uniform diameter shock tube with a rarefaction wave eliminator
in place is shown in Figure 14-A; also see Figure 5.

Assuming the same shock input conditions, a wave diagram has been constructed
with three baffles in the compression chamber. This is shown in Figure 14-B.
Also see Figure 10-D, Case 1-E for the recorded overpressure versus time. The
baffles and the rarefaction wave eliminator work together to enhance the shock
wave's positive duration.

4. Reichenbach, "Simulierung Langdauernder Druckatosse," Wissenchaftlicher
Bericht Nr. 10/64, Ernst-Mach-Institut, October 1964.
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Table 3. PARAMETERS FOR RAREFACTION CATCH-UP

i P_,kPa A B LR/LD
.10 10.14 0.1428 382.4 54.6
.15 15.20 0.2141 183.0 39.2
.20 20,27 0.2854 110.5 31.6
.25 25.34 0.3567 75.77 27.0
.30 30.41 0.4278 56.22 24.1
.35 35.47 0.4989 44.03 22.0
.40 40.54 0.5698 35.87 20.4
.45 45.61 0.6407 30.09 19.3
.50 50.68 0.7116 25.83 18.4
.55 55.74 0.7823 22.59 Il 77
.60 -60.81 0.8530 20.05 17.1
ass 65.88 0.9236 18.02 16.6
< 70 70.95 0.9942 16.36 16.3
<75 76.01 1.065 14.99 15.0
.80 81.08 1.135 13.84 1557
.90 91.22 1.276 12,02 15.3
.00 101.35 1.466 10.65 15.1
.10 111.49 1.557 9.596 14.9
.20 121.62 1.698 8.756 14.9
.30 131.76 1.834 8.074 14.8
.40 141.89 1.979 7.511 14.9
=50 152.02 2.120 7.039 14.9
.60 162.16 2.260 6.638 15.0
.70 172.30 2.401 6.293 15.1
.80 182.43 2.543 5.994° 15.2
.90 192.56 2.684 5.733 15.4
.00 202.70 2.826 5.502 15.5

I S R S R R N I R R e e T PRI S S S

Note: Ambient pressure is taken as 101.35 kPa.
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B. Application of 1/48th Scale Model Results to Full-Size BRL 2.44 m Shock
Tube with RWE

The experimental results for the RWE vented area ratios and driver
configurations for the 1/48th scale model were scaled up (48 times) to the
BRL 2.44 m shock tube. Assuming a vented RWE for the full size shock tube
with an opening of 2.043 m”, the standoff distances, W, may be calculated
from Equations 7 through 11.

R= s (7)

where A 1s the effectlve vented area, AT is the total area of shock tube

(4.699 m ), and R is defined to be the vented area ratio. See Table 4
and Figure 15 for values of the vented area ratio.

=A
Av SV * AHole ’ (8)

where the vented area is the sum of the side vent area, Asv’ and the hole

area, AHole'
Asy = (mDW - ABolts)’ (%)

where the side vented area for a circular test section is the total circular
spacing, 7DW, less the obstructed bolt area, ABolts = 21(0.0476)W,

Combining Equations 7-9 and rearranging, the result in Equation 10:

e G (10)

7D
Substituting in the values AT = 4.699 mz, AHole = 2.043 m",

Aggpee= 21 (0.0476) W, m% (for 21 bolts), and D = 2.44 m:

W = 0.075R - -.306, m. (11)
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Figure 15. Vented Area Ratio of RWE as a Function of Shock Overpressure
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Table 4. VENTED AREA RATIO OF RWE VERSUS INPUT SHOCK OVERPRESSURE

Input Overpressure, Vented Area
kPa Total Area
42 0.517
61 0.579
93 0.729
124 ’ 0.853

Table 5 and Figure 16 summarize the calculations for RWE standeff distance,
W, for the BRL 2.44 shock tube when used to produce decaying shock waves.

Scaling up the 1/48th scale model results as indicated gave the predicted
pressure-time waveforms shown in Figure 17 at Stations 87 and 88 for four
pressure levels. The upper traces show the predicted stagnation overpressure
to be expected, the middle traces show the predicted side-on overpressure,and
the bottom traces are the results of subtracting side-on from stagnation
(Pstag - PS), the compressible dynamic pressure.

The next section gives equivalent yields of TNT needed to produce free-
field blast waves corresponding to those predicted for the BRL 2.44 m shock
tube if modified as suggested to produce decaying waves.

C. Equivalent Yield for Similar Free-Field Blast Waves

Cube root scaling10 allows the blast parameters from one high-explosive
yield of TNT to be found for another yield. For the same atmospheric test
conditions, the scaling relationships are given by Equation 12 where the
scaling is from charge (1) to charge (2).

Dy _ B 2 /%Y (12)
I

1 1 1 1 1

where D, TA, t, I, and W are the station distance, time of arrival, positive
duration, positive impulse, and charge mass of the explosive. Subscript

(1) parameter values are taken from Reference 11 and are listed in

Table 6 for Examples 1-4.

IOSamueZ Gladstone and Philip J. Dolan - Editors, '"The Effects of Nuclear

Weapons," Dept. of Army Pamphlet No. 50-3, Hq, Dept. of Army, March 1977.

11"Structures to Resist the Effects of Accidental Explosions,'" TM 5-1300,

Dept. of Army, June 1969.
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Figure 17. Predicted Results for BRL 2.44 m Shock Tube
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Figure 17. Predicted Results for BRL 2.44 m Shock Tube (Cont.)
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Figure 17. Predicted Results for BRL 2.44 m Shock Tube (Cont.)
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Figure 17. Predicted Results for BRL 2.44 m Shock Tube (Cont.)
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The equivalent charge mass to be found may be obtained by rewriting a
portion of Equation 12 as Equation 13.

Wy =W, = (13)

where W, is the equivalent mass of TNT needed to reproduce a blast wave with
the samé side-on overpressure and duration, t.,. Table 6 lists these values
for each example of predicted shots for the BﬁL 2.44 m shock tube. The
values used for t. are listed for Examples 1-4 and correspond to average
side-on pressure values obtained during the 1/48th scaled shock tube model
tests (Table 1).

After equivalent values of W, are calculated (last column of Table 6)
the remaining parameters of distancCe, arrived time, and positive impulse
may be calculated by use of Equation 12 above. For example, for free-air,
a blast wave equal in pressure to 62.3 kPa and positive duration of
1281.6 ms from the second shock tube example would be produced by an equivalent
yield of 88.12 million kg of TNT. The desired pressure would occur at a distance
of 1535 m from the charge center of detonation. The blast wave would arrive
2243 ms after detonation with the required positive impulse of 25365 kPa-ms.

Table 6 summarizes the calculations for the four examples from the BRL
2.44 m shock tube predictions.

D. Comparison of Experimental and Computational Results

The hydrocode predictions described in the appendix were used to compare
with the experimental results as well as to check the limits of a 1-D code
when applied to a 2-D problem.

1. Long Straight Driver. The comparison of the experimental results and
the computer output for a long straight tube with an RWE is presented in
Figure 18-A. This is a 1-D problem and the correlation is excellent. The
only deviation noted is the undershoot of the hydrocode calculation going
into a negative pressure where the experimental record remains above the
base line.

2. Short Straight Driver. The short straight driver produced a
decaying wave but the duration was much too short for application to target
loading and response. The comparison of the hydrocode calculations and an
experimental record are presented in Figure 18-B. This is a 1-D problem and
the correlation is quite good.
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3. Multiple Pipe Driver. The multiple pipe driver is another valid
method for producing a decaying shock wave in the test section of the shock
tube. Experimental and computational results are compared in Figure 18-C.
The compression chamber volume is 1/8th the volume of the long straight
driver and there is a significant expansion from the compression chamber into
the test section. The test section area is approximately 4.5 times the
multiple pipe total area. This expansion creates a pressure-time record
with a sharp decay behind the shock front. The smaller compression chamber
volume causes a shorter duration and less impulse than a long straight pipe
driver. The expansion of the wave into the test section and the following
interactions are a 2-D problem and it can be seen in Figure 18-C that
the comparison of the experimental results and the hydrocode calculations does
not compare well.

4, Baffles in the Driver. A third method for producing a decaying
wave is the placement of baffles in the driver section. This is a 2-D
problem for the computer program and it can be seen in the comparison
presented in Figure 18-D that the comparison between the experimental results
and the 1-D computer output does not present an accurate agreement. This
difference is discussed in greater detail in the appendix.

V. SUMMARY AND CONCLUSIONS

Four types of shock tube drivers were designed to produce a decaying
shock wave in the test section of a shock tube. The driver designs were
built and tested on a 1/48th scale model of the BRL 2.44 m shock tube. The
tests included parameter changes in input shock overpressure and standoff
distances of the rarefaction wave eliminator (RWE) at the end of the test
section. Pressure-time records were obtained at scaled distances along the
test section corresponding to the test stations in the BRL 2.44 m shock tube.
Standoff distances were calculated for the full-sized RWE to be used.

Pressure-time records were compared from the four drivers: short driver,
baffled driver, small diameter driver, and multiple pipe driver. The tests
showed the baffled driver produced the least attenuated and smoothest
decaying wave. This driver method was chosen in order to make predictions for
the 2.44 m BRL shock tube. Typical expected pressure-time records were
presented for side-on overpressure, stagnation, and their difference, compressible

Q (stagnation - side-on pressure).

Equivalent yields of TNT necessary to produce similar free-field blast
waves were calculated for four example cases. Yields were found to vary
from 53.83 million kg (118.6 KT nuclear) to 817.6 million kg (1.8 MT
nuclear) over the pressure range predicted.

The NASA-Ames one-dimensional hydrocode was used to simulate the scaled

shock tube experiments. The results of these comparisons are shown in
the text and more completely in the appendix.

62



10.

11.

REFERENCES

Brian P. Bertrand, "BRL Dual Shock Tube Facility!' BRL MR 2001, Ballistic
Research Laboratory, Aberdeen Proving Ground, MD, August 1969 (AD 693264).

Brian P. Bertrand, "Proposed Improvement of BRL Dual Shock Tube Facif ity
BRL Technical Note No. 1733, Ballistic Research Laboratory, Aberdeen
Proving Ground, MD, April 1970 (AD 871736).

Andrew Mark, "Computational Design of Large Scale Blast Simulators,"
AIAA 19th Aerospace Sciences Meeting, January 12-15, 1981, St. Louis,
Missouri.

Edmund J. Gion, "Simulation of Low Level Explosives Blast Loadings at
Full Scale by Modifications to BRL Dual Shock Tube Facility," Memorandum
Report ARBRL-MR-02853, Ballistic Research Laboratory, Aberdeen Proving
Ground, MD, July 1978 (AD A059854).

J. R. Crosnier and J. B. G. Monsac, "Large Diameter High Performance
Blast Simulator," Seventh MABS, Medicine Hat, Alberta, Canada, 13-17 July
1981.

George A. Coulter, Gerald Bulmash, and Charles N. Kingery, "Experimental
and Computational Modeling of Rarefaction Wave Eliminators Suitable for
the BRL 2.44 m Shock Tube," Technical Report ARBRL-TR-02503, Ballistic
Research Laboratory, Aberdeen Proving Ground, MD, June 1983 (AD A131894).

C. W. Lampson, "Résumé of the Theory of Plane Shock and Adiabatic Waves

- with Applications to the Theory of the Shock Tube," BRL Technical

Note 139, Ballistic Research Laboratories, Aberdeen Proving Ground, MD,
March 1950 (AD 629328).

I. I. Glass, "Shock Tubes Part I: Theory and Performance of Simple
Shock Tubes," UTIA Review No. 12, Part I, Institute of Aerophysics,
University of Toronto, Toronto, Canada, May 1958.

H. Reichenbach, "Simulierung Langdauernder Druckatosse," Wissenchaftlicher
Bericht Nr. 10/64, Ernst-Mach-Institut, October 1964.

Samuel Gladstone and Philip J. Dolan - Editors, "The Effects of Nuclear
Weapons," Dept. of Army Pamphlet No. 50-3, Hq, Dept. of Army, March 1977.

"Structures to Resist the Effects of Accidental Explosions," TM 5-.1300,
Dept. of Army, June 1969.

63



APPENDIX A

HYDROCODE PREDICTIONS

65



II.

I1I.

Iv.

VI.

LIST OF ILLUSTRATIONS . . . . . .

INTRODUCTION .

OBJECTIVE o & 2

METHOD N s S A EER XA S

A. NASA-Ames One-Dimensional Hydrocode

B. Baffles

C. Rarefaction Wave Eliminator

D. Input Parameters . . . . . . . . .

E. Pipes 5

RESULTS N T ST

A. 5.08 cm Shock Tube in the Standard Configuration .
B. Simulation of the 5.08 cm Shock Tube Experiment
C. Computationally Modeled Smoothly Decaying Waves
D. Pipes

ANALYSIS A M miAees REE g

CONCLUSIONS

TABLE OF CONTENTS

LIST OF REFERENCES .

67

Page
69
71
71
71
71
72
72
74
74
76
76
76
77
77
77
80

84



Figure

A-1.

LIST OF ILLUSTRATIONS

Schematic of the Computational Shock Tube . . . . . .

Pressure-time Records for a Straight Shock Tube without
an RWE and with an RWE ¢ ¢« ¢« + ¢ & ¢+ v ¢ ¢ o o o o &

Simulation of the 5.08 cm Shock Tube Experiment with
Five Baffles and Four Baffles . . .. . .. . ..

Computational Modeling of Smoothly Decaying Waves with
Five Baffles and Four Baffles 5 B

Simulation of the 5.08 cm Shock Tube Experiment with
Pipes for the Driver . . . . . . . .. . . ..

Comparison between the 5.08 cm Shock Tube Experiment

and Computer Simulation with Five Baffles . . . . . . .

69

Page
75

78

79

81

82

83



A

A

A

I. INTRODUCTION

. The Ballistic Research Laboratory 2.44 meter shock tubéN41ecated on
Spesutie JIsland is used to test the blast loading on and response of materiel
and scale models. In the standard test configuration, the shock tube produces
a flattop wave. The actual free-field blast loading that a military target

is exposed to may be of longer duration and is an exponentially decaying wave.

IT. OBJECTIVE

This study provides recommendations for serviceable modifications to the
2.44 meter shock tube facility so that it produces blast loading that better
simulates an actual free-field blast event. Results from the 5.08 cm shock
tube are presented in the main body of this report. This appendix discusses
the computational simulation of decaying waves in the 2.44 metre shock tube.
Modeling the decaying wave problem is a more pragmatic approach than
attempting to modify the 2.44 meter facility directly.

ITI. METHOD

A. NASA-Ames One-Dimensional Hydrocode

With a mainframe computer it is possible to simulate complicated fluid
flow by using a mathematical algorithm based on either the Lagrangian or
Eulerian fluid mechanics model. Detailed information describing field
variables may be obtained at any spacial and temporal location. Eigsntially,
this is the computational equivalent of a fluid dynamics experiment:

The NASA-Ames hydrodynamic ccdé*semployed in this study is a one-
dimensional, adiabatic, inviscid, Eulerian computer algerithm written by
Dr. Andrew Mark and modified by Mr. Klaus Opalka of the Ballistic Research
Laboratory.

“Ipyian P. Bertrand, "BRL Dual Shock Tube Facility," BRL M-2001, August 1969

(AD 693264).
-2

Patrick J. Koache, Computational Fluid Mechanics, Hermosa Publishers,
Albuquerque, N.M., 1972, pp 1-13, 204-286.

_3Andrew Mark, "Computational Design of Large Scale Blust Simulators,"
ATAA 19th Aerospace Sciences Meeting, January 12-15, 1981, St. Louis, MO.
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The ideal gas equation of state (Equation A-J)and the Euler equations
for conservation of mass, momentum, and energy per unit volume (Equation A-2)
are applied to a variable area shock tube. See Figure A-1. The Euler
equations are solved in differential form for density, total energy, a one-
dimensional component of flow velocity, and pressure using finite difference

formulations attributed to Beam and Warming.A"4

The initial conditions are normalized, and the independent variables
(x,t) are transformed into a computational grid. The governing equations
are solved implicitly at one-dimensional spacial grid points (x) as a
~ function of time.

B. Baffles

Multiple area contractions in the compression chamber are the mechanism
for producing decaying waves in the 2.44 meter shock tube. These baffles
affect the shock wave profile in several ways.

The baffles serve as reflection surfaces for the rarefaction wave
originating at the diaphragm when the diaphragm bursts. Reflected rarefaction
waves travel downstream, overtake the shock wave, and decrease the pressure.
Furthermore, a pressure drop occurs across each baffle. As the flow passes
through an area constriction, the pressure decreases and the flow velocity
increases. Downstream from each baffle the flow is markedly two-dimensional;
strong vortices form. The kinetic energy of the vortex formation is slowly
released as internal energy when the vortices move downstream and dissipate.
Although the flow velocity increases in the area constriction, the net mass
flow decreases. Therefore,the duration of the shock wave is increased. The
baffles produce a long duration decaying wave.

Whereas the experimental baffles are thin plates having one rounded
orifice to regulate the flow, the computational baffles are parabolic area
contractions that occupy .a significant finite length in the computational
shock tube. Three to six baffles with different open area rations are placed
in the driver section.

C. Rarefaction Wave Eliminator

A rarefaction wave eliminator, placed at the shock tube open end,
partially reflects the shock wave alleviating the magnitude and effect
of the open end rarefaction waveS Thus, the premature decay of the shock
wave, which is not a free-field phenomenon, is eliminated resulting in a
longer duration shock wave. The RWE also decreases the abnormally high
flow velocity that is caused by the shock wave leaving the tube.

A~4p M. Beam and R. F. Warming, "An Implicit Factored Scheme for the
Compressible Navier Stokes Equations," AIAA Journal, Volume 16, Nc. 4,
April 1978, pp 393-402.

A_SGeorge 4. Coulter, Gerald Bulmash, and Charles N. Kingery, "Experimental
and Computational Modeling of Rarefaction Wave Eliminators Suitable for
the BRL 2.44 m Shock Tube," Technical Report ARBRL-TR-02503, QgZZistic
Research Laboratory, Aberdeen Proving Ground, MD, June 1983 (AD A131894).
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P=(y-1) (e-1/2 pud) , (A-1)

9
~ (A + 2 (puA) =0 (A-2a)
ot T aX
3 3 - 0A
3 2 - =0, A-2b
— (pud) + -— [(pu +p)A] = Pay ( )
at a'x
and a  (eA) + i_ [ uA(e + p)} = 0, (A-2¢)
ot 9x
where p = pressure, y is the ratio of specific heats,
e = total energy, p = density, u = flow velocity,
A = tube cross-sectional area, t = time, and
x = distance.

The NASA-Ames hydrocode models . an RWE that is a flat circular plate
having the same diameter as the shock tube. The RWE has one circular hole
of time invariant cross-sectional area that allows for outflow. The cross-

sectional area is varied with each run depending on the driver pressure.
Reference A-5 discusses vented area ratios.
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D. Input Parameters

The area contractions and rarefaction wave eliminator must occupy physical
length in the computational shock tube. Otherwise, a spacial grid point
would be dual valued, which is a computational impossibility. More importantly,
the computational scheme is sensitive to the number of spacial grid points
within the length of an area change. A large number of grid points is needed
to define a continuous area change and provide valid numerical results.
Reference A-5shows that computational results approach an asymptotic value if
seven or more grid points are placed within the length occupied by an area
change.

The distribution and total number of grid points are established as
computer input parameters. The spacial computational grid may be equidistantly
partitioned along the tube length or clustered about a specific location.
Thus,aproportionally large number of grid points may be placed where a cross-
sectional area change occurs.

However, in this study, where there are up to seven area changes, a
grid clustering function was not feasible because clustering about one area
contraction attenuates the grid at other area contractions. Therefore, a large
number of grid points (602) was used in the spacial grid. Area contractions
were input having a physical length of 1.5% for an increasing or decreasing
segment, that is, 1.5% for the RWE and 3.0% for each parabolic area contraction.
This arrangement provided nine grid points within an increasing or decreasing
segment.

E. Pipes

Experimentally, another method to produce decaying waves was also tried.
Placing a number of pipes of different lengths in the driver produced a
decaying wave. These pipes reduced the compression chamber volume and provided
for expansion of the shock wave when the flow left the pipes at the diaphragnm.
Also, the ends of the pipes provided a reflecting surface for upstream
traveling waves. This method seems a bit contrived and awkward to implement,
but is included in this report for completeness.

Pipes in the driver were simulated computationally by changing the
French-type driver that the NASA-Ames one-dimensional code models. The
NASA-Ames driver has a four phase steplike increase in cross-sectional area
ratio, a convergent section, throat, and divergent section. By eliminating
the convergent section, throat and divergent section, it was possible to
simulate the cross-sectional area reductions of pipes by using the four-
phase step increase.
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IV. RESULTS

Computational results apply to both the 5.08 cm and 2.44 m shock tubes.
These dimensions are normalized by the hydrodynamic code. Since the 5.05 cm
tube is a 1/48th scale model of the 2.44 m tube, the normalized dimensions
apply to both shock tubes. For the 2.44 m tube arrival time and shock
duration are: 48 times those values for the 5.08 cm tube. Results are presented
for Station 3 of the 5.08 cm shock tube which corresponds to Station 87 in the
2.44 m tube. Station 87 is the primary test station. Time is measured from
when the diaphragm ruptures.

The compression chamber pressure ratio was 2.520 for the straight tube
and baffle cases. It was increased to 2.939 for the pipe cases to compensate
for the reduced volume.

A. 5.08 cm Shock Tube in the Standard Configuration

Figure A-2-A shows the pressure-time record at Station 3 in the 5.08 cm
shock tube with the driver in the standard test configuration. Neither
baffles nor a rarefaction wave eliminator (RWE) is present. Maximum side-on
pressure is sustained until the open end rarefaction wave mitigates the
pressure. Subsequently, a rarefaction wave from the closed end of the tube,
occurring at about 11 ms, reduces the pressure to well below ambient. This
waveform, with the 5.08 cm shock tube inits standard test configuration,
may be used as a reference for comparing other waveforms in the 5.08 cm and
2.44 m tubes.

Figure A-2.B displays the pressure history with a rarefaction wave elimi-
nator in use. The RWE nullifies the effects of the open end rarefaction. The

duration of the flattop wave is increased by 150%.

B. Simulation of the 5.08 cm Shock Tube Experiment

The main body of this report demonstrates that smoothly decaying, long
duration waves can be produced in the 5.08 cm model of the 2.44 m shock tube.
Experimentally, beneficial results are achieved with six, five, or four
baffles in the driver and to a lesser degree satisfactory results are obtained
with three baffles. Figures A-3-A and A-3-B display the computer simulations
of the experimental results for the five and four baffle cases, respectively.

Initially, the computer simulations show decay which can be correlated
with two baffles close to the diaphragm. The decay is caused by rarefaction
waves reflected from these baffles. Subsequently, there is an increase in
pressure in the computational case where as experimentally the decay continues.
Note that the RWE does extend the duration of the wave when compared to Figure
A-2-A where an RWE was not used. However, when compared with Figure A-2-B,
evidently there is no significant increase in the duration because of the baffles.
Experimentally, there is a significant increase in duration when baffles are
used when compared to the case without baffles.

) Comparing A-3-A with A-3-B shows that the baffle farthest from the diaphragm
in A-3-A does not appreciably affect the waveform.
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C. Computationally Modeled Smoothly Decaying Waves

Evidently, in order to maintain a decaying wave, another baffle close
to the diaphragm is required to act as a reflecting surface for the rarefaction
wave originating from the diaphragm. Figure A-4-A shows the one-dimensional
code may be used to produce a decaying wave when five baffles are used.
Figure A-4-B shows four baffles will produce an accgptably decaying wave. If
another baffle is removed, reducing the total number to three baffles, the
results resemble the experimental simulations displayed on Figure A-5-A where
a problem existed because there were too few baffles near the diaphragm.

D. Pipes

Figure A-5-A shows the effects of a step-like increase in cross-sectional
area ratio on the driver. When the diaphragm bursts, compressed gas is

allowed to expand,which reduces the pressure. Subsequently, the open end
rarefaction wave causes the pressure to decay below ambient pressure.

Figure A-5-B shows a pipe-like simulation with an RWE. This pressure-time
history shows smooth decay. There is an increase in pressure at about 9 msec
because of reflections from the ends of the steps. The wave that is reflected
here originated as a compression wave travelling upstream from the RWE.

Positive phase impulse and peak pressure are less than the baffle cases
because the driver volume is much less in the pipe simulation. This was

partially compensated for by increasing the compression chamber ratio to
2.939.

V. ANALYSIS

Figure A-6 is a direct comparison of the experimental and computational
results for the five baffle cases, which vividly shows the disparities stated
below.

What is occurring in the 5.08 cm shock tube experiment that the one-
dimensional hydrodynamic code does not simulate? It is necessary to answer
this question to determine three things: 1) why the positive phase duration
in the experiment is significantly longer than in the computer simulation,
2) why the baffle arrangement provides smooth decay experimentally, and
3) why there is an increase in presssure for the computational model; this
increase in pressure occurs after the effects of the two haffles closest to
the diaphragm are experienced (at 5 msec).

An irrecoverable drop in pressure or head loss occurs across each baffle.
As stated in the 'Method" Section, within the constricted volume the flow
velocity increases and the pressure decreases. The net mass flow is reduced;
this elongates the duration. Downstream from each baffle vortices form. The
flow is distinctly two-dimensional with respect to the shock tube axis.
Kinetic energy in the vortex formations is slowly dissipated as internal
energy. Downstream from each baffle the pressure does not return to its
original value.
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The one-dimensional hydrocode does not expressly simulate head losses.
The one-dimensional code solves for the variables at the spatial grid points
at a given time step and returns artificially high pressure values which are
used to solve at the next time step. The large increase in pressure, seen
on the computer simulation, following the e€ffects of the baffles near the
diaphragm is because the hydrocode does not consider head losses.

Gottliet“has shown in a computer simulation of the BRL 2.44 m shock
tube facility, for a specific baffle arrangement, head losses associated with
the baffles are an important mechanism for producing long duration smooth

“decay.

The one-dimensional code yields a smoothly decaying wave (Figure A-4) with
an extra baffle as an additional reflecting surface for rarefaction waves.
This baffle compensates for the required head losses.

The one-dimensional code does not consider boundary layer frictional
effects. The rarefaction wave eliminator study (Reference A-5), which compares
the 5.08 cm shock tube without baffles and the one-dimensional code, showed
the durations and wave profiles were quite similar although the one-dimensional
code is inviscid. Of course, boundary layer effects could be intensified
in the baffle region. This would serve to further reduce the effective area
constrictions in the experimental tube which would increase the head losses.

VI. CONCLUSIONS

The one-dimensional hydrocode corroborates the experimental results.
Both methods produced smoothly decaying waves by placing area constrictions
in the standard length driver which demonstrates that the 2.44 m shock tube
facility may be readily modified to produce decaying waves. This is of
primary importance to the specific study. :

This particular application of the one-dimensional code, with numerous
severe area contractions and associated strong two-dimensional flow components,
tested one-dimensional modeling limitations and provided feedback to enhance

the one-dimensional code. Inclusion of head losses (currently under development)*

will provide a more powerful one-dimensional modeling technique to further
increase the value of an already viable hydrodynamic code.

6James Joseph Gottlieb and Tsutomu Saito, "Use of Perforated Plates in the
Driver of the BRL 8-Foot Shock Tube To Produce Simulated Blast Waves with
Decaying Overpressure Signatures,” Final Progress Report, April 7, 1983,

University of Toronto Institute for Aerospace Studies, Dowmsview, Canada.

*Private Communications with Andrew Mark and Dixie Hisley, BRL, April 1983.
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